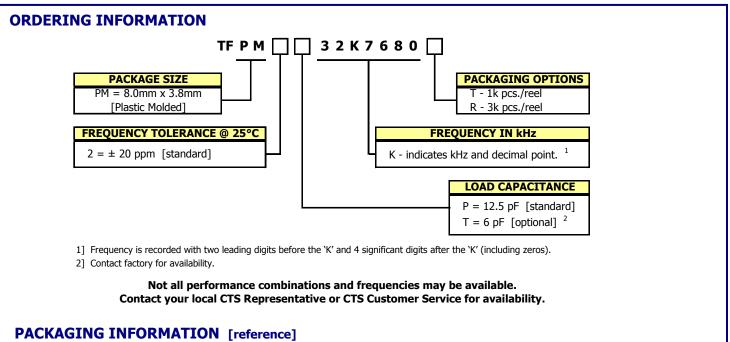
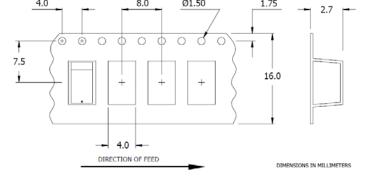


TFPM SERIES


TUNING FORK CRYSTAL

FEATURES


- 32.7680 kHz Frequency Reference
- Package Size 8.0mm x 3.8mm
- Tuning Fork Crystal Design
- Plastic Molded Package
- Frequency Tolerance, ±20 ppm Standard
- Frequency Temperature Coefficient, -0.034ppm/°C²
- Operating Temperature, -40°C to +85°C Standard
- Tape & Reel Packaging, EIA-481
- RoHS Compliant in Accordance with EU Directive 2011/65/EU
 - Lead-Free Termination Finish - Exemption 7(a), Lead [Pb] in high melting temperature type solders

APPLICATIONS

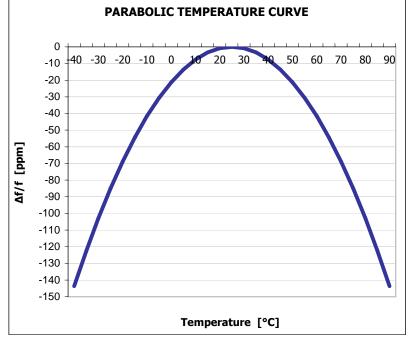
The TFPM crystal series is ideal for use in a wide range of applications requiring a real-time frequency reference. Compatible to Citizen CM200C/S and Epson MC-306.

Device quantity is 1k pcs. maximum 180mm reel and 3k pcs. maximum 330mm reel.

DOCUMENT NO. 008-0405-0

PAGE 1-3

REV. B


WWW.CTSCORP.COM

ELECTRICAL CHARACTERISTICS

	PARAMETER	SYMBOL	CONDITIONS	MIN	ΤΥΡ	MAX	UNIT
	Frequency	f ₀			32.7680		kHz
ERS	Operating Mode	-		Flexural Mode [Tuning Fork]			-
	Frequency Tolerance	$\Delta f/f_0$	@+25°C	-	20	-	± ppm
	Frequency Temperature Coefficient	∆f/f _M		-0.034±0.006ppm/°C ²			-
ET	Frequency Stability			See Figure 1			
ELECTRICAL PARAM	Operating Temperature Range	T _A		-40	-	+85	°C
	Turnover Temperature	Τ _M	±5℃	-	+25	-	°C
	Load Capacitance *	CL	Standard	-	12.5	-	рF
	Aging	$\Delta f/f_0$	@+25°C, 1st year	-	-	3.0	± ppm
	Drive Level	DL		-	0.5	1.0	μW
	Shunt Capacitance	C ₀		-	1.35	-	pF
	Motional Capacitance	C ₁		-	2.1	-	fF
	Series Resistance	R ₁		-	-	50	k Ohms
	Insulation Resistance	R _i	+100Vdc ±15Vdc	500	-	-	M Ohms
	Storage Temperature Range	T _{STR}		-40	-	+85	°C

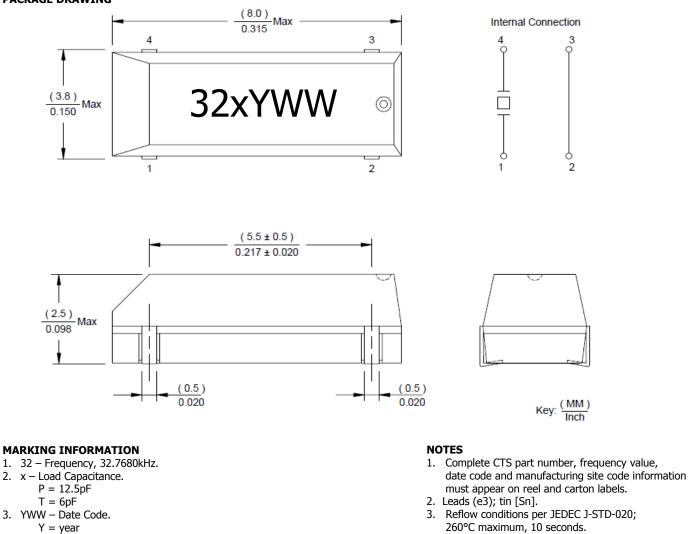
FIGURE 1

Frequency stability [ppm] is determined using parabolic curve, Δf = Temperature Coefficent(T_A-T_M)².

Ex. Find frequency stability at $T_A = 45^{\circ}C$

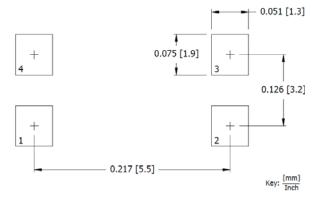
$$\Delta f = -0.034(45-25)^2$$

$$\Delta f = -0.034(20)^2$$


$$\Delta f = -0.034(20)^{\circ}$$

$$\Delta r = -13.6 \text{ ppm}$$

MECHANICAL SPECIFICATIONS



4. MSL = 1.

SUGGESTED SOLDER PAD GEOMETRY

WW = week

